
Tries
By Adri Wessels

IOI Training Camp 2 (8-9 February 2019)



• A “tree”-type structure used to store key-value pairs or optionally just 
existence of keys.

• Also known as retrieval trees, radix trees or prefix trees.
• Made to be a compromise between time and memory.
• Each node stores only a single character of the key, with the final node 

of the key also storing the value inserted with the key.
• Creates an implicit ordering of the keys through it’s implementation.
• Pronounced “try”.

Tries



Tries – Example:
We start with the empty root 
node



Tries – Example:
We start with the empty root 
node
We then begin adding the 
nodes for the first key: “atom”

a



Tries – Example:

a

t

We start with the empty root 
node
We then begin adding the 
nodes for the first key: “atom”



Tries – Example:

a

t

o

We start with the empty root 
node
We then begin adding the 
nodes for the first key: “atom”



Tries – Example:

a

t

o

m

We start with the empty root 
node
We then begin adding the 
nodes for the first key: “atom”



Tries – Example:

a

t

o

m

16

We start with the empty root 
node
We then begin adding the 
nodes for the first key: “atom”
Then the associated value: 16



Tries – Example:

a

t

o

m

16

We start with the empty root 
node
We then begin adding the 
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key: 
“ate”



Tries – Example:

a

t

o

m

16

We start with the empty root 
node
We then begin adding the 
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key: 
“ate”



Tries – Example:

a

t

o

m

16

e

We start with the empty root 
node
We then begin adding the 
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key: 
“ate”



Tries – Example:

a

t

o

m

16

e

18

We start with the empty root 
node
We then begin adding the 
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key: 
“ate”
Then the value again: 18



Tries – Example:

a

t

o

m

16

e

18

We start with the empty root 
node
We then begin adding the 
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key: 
“ate”
Then the value again: 18
Maybe we want to add the 
key: “at”



Tries – Example:

a

t

o

m

16

e

18

We start with the empty root 
node
We then begin adding the 
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key: 
“ate”
Then the value again: 18
Maybe we want to add the 
key: “at”



Tries – Example:

a

t

o

m

16

e

18

We start with the empty root 
node
We then begin adding the 
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key: 
“ate”
Then the value again: 18
Maybe we want to add the 
key: “at”



Tries – Example:

a

t

o

m

16

e

18

We start with the empty root 
node
We then begin adding the 
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key: 
“ate”
Then the value again: 18
Maybe we want to add the 
key: “at”
Then the value: 20

20



Tries – Example:

a

t

o

m

16

e

18

We start with the empty root 
node
We then begin adding the 
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key: 
“ate”
Then the value again: 18
Maybe we want to add the 
key: “at”
Then the value: 20
Finally we have our completed 
trie with our 3 keys ordered: 
at, ate, atom.

20



Tries – Example:

• From our example we can see that insertion is O(L) where L is the 
length of the key since we just traverse the tree down and go through 
L nodes along the way.

• Similarly checking if a key exists or getting the value of a key is also 
O(L) since we essentially do the same thing, but then just retrieve the 
value at the end.

• The example also shows that a prefix of another key can also be its 
own key (Note: This is dependant on the implementation).

• It should also be noted that the keys do not have to be strings and can 
be any type that can be represented as an array of a smaller type 
where the smaller type is the equivalent “character” type.



Tries – Implementation:

• First we need some defines

• ALPHABET_SIZE is the amount of different values each character can 
take.

• SMALLEST_CHAR is the smallest value that each character can take so 
that the characters can be offset to start at 0.

• DEFAULT_VAL is the default value that a node stores when it doesn’t 
store an inserted value. Another implementation is to have nodes 
store pointers to values and then use nullptr as the default value.



Tries – Implementation:

• The implementation of the tree itself amounts to a single Node 
pointer.

• The implementation shown uses strings as keys and ints as values, but 
you can change this if you need to without too much trouble.



Tries – Implementation:

• Next we have the Nodes which store all the data and connect to each 
other by storing pointers to their children.

• Note: std::array is used here, but it can be replaced with a normal 
array. This does require you to include <array>.



Tries – Implementation:

• To insert we traverse down the tree until we reach the end of the key 
and then add the value in.

• At each step you check if the node already exists.
• If the node exists, traverse to it.
• If it doesn’t, create it and traverse to it.
• When you traversed down to the last node of the key, give that node 

the value.
• Note: The new keyword is used to create new Nodes because it’s 

easier (and probably faster) than having a global vector to store them 
all in. You can also create the root note with new if you want to.



Tries – Implementation:



Tries – Implementation:

• The method to get 
the value for the key 
returns a pointer to 
the value.

• We also traverse the 
tree, but if a node 
doesn’t exist we just 
return nullptr.

• If we get to the end 
we return the 
address of the value.



Tries – Implementation:

• To delete we need to traverse down the tree and then traverse back 
up while deleting nodes that don’t correspond to any other keys along 
the way.

• The easiest way to do this is with recursion.
• We traverse down to the bottom and then remove the value from the 

last node of the key.
• On the way back up the key we check if the node has any children, 

and if it is storing a value. If neither of these are true we can delete it.
• We then return whether we deleted the node so that the next node 

up knows to remove the deleted node from it’s children.
• Not as easy as the rest of the implementation, but also not always 

necessary.



Tries – Implementation:



Tries – Analysis:

• Inserting, retrieving and deleting values is O(L) because the 
dominating term is the traversal of the trie along the key.

• Space complexity is O(NL) where N is the number of keys and L is the 
length of the longest key.


