Tries A ‘ B
By Adri Wessels
|0l Training Camp 2 (8-9 February 2019) T A
P
E o E | L
M T L

Tries

* A “tree”-type structure used to store key-value pairs or optionally just
existence of keys.

* Also known as retrieval trees, radix trees or prefix trees.

* Made to be a compromise between time and memory.

* Each node stores only a single character of the key, with the final node
of the key also storing the value inserted with the key.

* Creates an implicit ordering of the keys through it’s implementation.
* Pronounced “try”.

: We start with the empty root
Tries — Example: e R

O

We start with the empty root
node

We then begin adding the
nodes for the first key: “atom”

Tries — Example:

We start with the empty root
node

We then begin adding the
nodes for the first key: “atom”

Tries — Example:

We start with the empty root
node

We then begin adding the
nodes for the first key: “atom”

Tries — Example:

We start with the empty root
node

We then begin adding the
nodes for the first key: “atom”

Tries — Example:

We start with the empty root
node

We then begin adding the
nodes for the first key: “atom”
Then the associated value: 16

Tries — Example:

: We start with the empty root
Tries — Example: ode

We then begin adding the
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key:
“ate

”

: We start with the empty root
Tries — Example: ode

We then begin adding the
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key:
“ate

”

: We start with the empty root
Tries — Example: ode

We then begin adding the
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key:
“ate

”

: We start with the empty root

Tries — Example: ode

We then begin adding the
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key:
“ate
Then the value again: 18

”

We start with the empty root
node

We then begin adding the
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key:
“ate
Then the value again: 18
Maybe we want to add the
key: “at”

Tries — Example:

”

We start with the empty root
node

We then begin adding the
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key:
“ate
Then the value again: 18
Maybe we want to add the
key: “at”

Tries — Example:

”

We start with the empty root
node

We then begin adding the
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key:
“ate
Then the value again: 18
Maybe we want to add the
key: “at”

Tries — Example:

”

: We start with the empty root
Tries — Example: ode

We then begin adding the
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key:
“ate
Then the value again: 18
Maybe we want to add the
key: “at”

Then the value: 20

”

: We start with the empty root
Tries — Example: ode
We then begin adding the
nodes for the first key: “atom”
Then the associated value: 16
We can then add another key:
“ate
Then the value again: 18
Maybe we want to add the
key: “at”
Then the value: 20
Finally we have our completed
trie with our 3 keys ordered:
at, ate, atom.

”

Tries — Example:

* From our example we can see that insertion is O(L) where L is the
length of the key since we just traverse the tree down and go through
L nodes along the way.

e Similarly checking if a key exists or getting the value of a key is also
O(L) since we essentially do the same thing, but then just retrieve the
value at the end.

 The example also shows that a prefix of another key can also be its
own key (Note: This is dependant on the implementation).

* It should also be noted that the keys do not have to be strings and can
be any type that can be represented as an array of a smaller type
where the smaller type is the equivalent “character” type.

Tries — Implementation:

* First we need some defines
ALPHABET_SIZE

SMALLEST _CHAR 'a’

DEFAULT_VAL

 ALPHABET_SIZE is the amount of different values each character can
take.

* SMALLEST _CHAR is the smallest value that each character can take so
that the characters can be offset to start at O.

 DEFAULT_VAL is the default value that a node stores when it doesn’t
store an inserted value. Another implementation is to have nodes
store pointers to values and then use nullptr as the default value.

Tries — Implementation:

* The implementation of the tree itself amounts to a single Node
* The implementation shown uses strings as keys and ints as values, but
you cah change this if you need to without too much trouble.

Tries — Implementation:

* Next we have the Nodes which store all the data and connect to each
other by storing pointers to their children.

< *, ALPHABET_SIZE> children;
value;
childNum;

() : children(), value(DEFAULT VAL), childNum(®)

children. ();

* Note: std::array is used here, but it can be replaced with a normal
array. This does require you to include <array>.

Tries — Implementation:

To insert we traverse down the tree until we reach the end of the key
and then add the value in.

At each step you check if the node already exists.

If the node exists, traverse to it.

If it doesn’t, create it and traverse to it.

When you traversed down to the last node of the key, give that node
the value.

Note: The new keyword is used to create new Nodes because it’s
easier (and probably faster) than having a global vector to store them
all in. You can also create the root note with new if you want to.

Tries — Implementation:
(

(); i++)

(search->children] [1] - SMALLEST_CHAR] ==

search->children| [1] - SMALLEST_CHAR] =
search->childNum++;

}

search = search->children| [1] - SMALLEST_CHAR];
}

search->value =

Tries — Implementation:

* The method to get

the value for the key [k (
returns a pointer to
the value. |
* We also traverse the (); i++)
tree, but if a node search = search->children[[1] - SMALLEST_CHAR];

(search ==) :

doesn’t exist we just
return nullptr.
e If we get to the end (search->value == DEFAULT_VAL)
&search->value;
we return the
address of the value.

Tries — Implementation:

To delete we need to traverse down the tree and then traverse back
up while deleting nodes that don’t correspond to any other keys along
the way.

The easiest way to do this is with recursion.

We traverse down to the bottom and then remove the value from the
last node of the key.

On the way back up the key we check if the node has any children,
and if it is storing a value. If neither of these are true we can delete it.
We then return whether we deleted the node so that the next node
up knows to remove the deleted node from it’s children.

Not as easy as the rest of the implementation, but also not always
necessary.

Tries — Implementation:

& : -)

->value = DEFAULT VAL;

deleted = ->children][[] - SMALLEST_CHAR],

(deleted)
{

->childNum--;
->children][[] - SMALLEST CHAR] =

out = ;
(->childNum == && ->value == DEFAULT VAL)

out =

Tries — Analysis:

* Inserting, retrieving and deleting values is O(L) because the
dominating term is the traversal of the trie along the key.
e Space complexity is O(NL) where N is the number of keys and L is the

length of the longest key.

